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ABSTRACT

For many years now, I/O read time has been recognized as
the primary bottleneck for parallel visualization and analy-
sis of large-scale data. In this paper, we introduce a model
that can estimate the read time for a file stored in a parallel
filesystem when given the file access pattern. Read times
ultimately depend on how the file is stored and the access
pattern used to read the file. The file access pattern will
be dictated by the type of parallel decomposition used. We
employ spatio-temporal parallelism, which combines both
spatial and temporal parallelism, to provide greater flexibil-
ity to possible file access patterns. Using our model, we were
able to configure the spatio-temporal parallelism to design
optimized read access patterns that resulted in a speedup
factor of approximately 400 over traditional file access pat-
terns.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; D.1.3
[Concurrent Programming]: Parallel programming

Keywords

Visualization, Data Analysis, I/O, Modeling, Parallel Tech-
niques

1. INTRODUCTION
The visualization and analysis of large-scale data in a
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timely manner has been a recognized problem for many
years now. With computational power increasing and the
introduction of more sensitive instrumentation, data from
both simulations and experiments are expected to continue
to grow. The result of these trends are ever larger datasets
containing higher spatial and temporal resolutions. The
standard method to tackle the large-data problem is to use
parallel processing. In practice, the main bottleneck in large-
scale parallel analysis is the I/O read step. One of the main
factors in I/O performance is how the file is accessed, and
what the read pattern is. The chosen parallel decomposition
strategy determines the read pattern.

For many of the common visualization tools used by the
community, parallel processing implies using a data-parallel
approach employing only spatial parallelism. In this ap-
proach, the data is partitioned spatially and spread out
across several processes. Each process then applies the same
computation on their piece of data. Another option for
data decomposition, temporal parallelism, involves process-
ing data from different timesteps simultaneously. The same
computations are applied to each timestep. Often over-
looked is how different decomposition approaches affect the
read pattern in files, despite the fact that I/O performance
is usually the performance bottleneck.

In this paper, we contribute a model which estimates the
total running time of a parallel visualization and analy-
sis pipeline. We also contribute the implementation of a
pipeline capable of spatio-temporal parallelism, called the
spatio-temporal pipeline, in a general purpose visualization
tool. Our model can estimate the time needed to load a
file stored in a parallel filesystem when given the file ac-
cess pattern. The goal of our model is to provide a useful
way of comparing various workflow choices, rather than ac-
curately predicting exact running times. Using this model,
we can determine which parallel approaches are best suited
for a given file format and pipeline. To offer more control
over the file access pattern, we implement a method that
employs both spatial and temporal parallelism, called the
spatio-temporal pipeline. In the spatio-temporal pipeline,



processes are separated into groups called time compart-
ments. Temporal parallelism is employed as time compart-
ments independently process a timestep concurrently. Each
timestep is partitioned spatially over all processes within the
time compartment, thus the spatio-temporal pipeline uses
both spatial and temporal parallelism. The spatio-temporal
pipeline is a fully integrated feature in ParaView and UV-
CDAT (Ultrascale Visualization - Climate Data Analysis
Tools). ParaView is a general-purpose parallel visualization
tool, and UV-CDAT [13] is a visualization and analysis tool
specializing in large-scale climate-data analysis.
Time-varying data can be stored in a myriad of different

formats. How the data is stored and what access patterns
are used to read in the data play a critical role in I/O read
performance. In this paper, we focus our discussion to a very
common file format: the time-varying data is composed of
files, and each file represents one scalar field at one timestep.
The performance differences between temporal, spatial,

and spatio-temporal parallelism may not be readily appar-
ent. Indeed, if all components of a parallel system were to
scale perfectly, there should be no difference in running time
between using spatial parallelism, temporal parallelism, and
spatio-temporal parallelism, for equal amounts of paralleliza-
tion. In practice, there is a difference between various par-
allelization schemes because each method creates a distinct
read access pattern, affecting the I/O read time. Ultimately,
using spatio-temporal parallelism allows for greater flexibil-
ity in selecting a file access pattern that will provide greater
I/O performance. The model is used to determine which file
access pattern maximizes performance.

2. RELATED WORK
Attempts have been made to address I/O performance

for visualization of large datasets. Some have improved I/O
performance for post processing by using systems connected
to faster storage such as solid state drives (SSDs) [3][8].
Mitchell et al [7], using VisIO, realized performance gains
over the traditional high performance parallel file system
by extending the ParaView system to support the Hadoop
file system. Preprocessing data before post-processing has
been shown capable of lessening I/O bandwidth require-
ments. Woodring et al [15] encode raw data in a JPEG
2000 format to enable multi-resolution streaming over low
bandwidth connections. In-situ, in-transit, and hybrid com-
binations of these two paradigms have been used to lessen
the necessity of post-processing, mitigating associated I/O
issues [5][11][12].
Parallel post-processing of climate data is of major con-

cern. Woitaszek et al [14] gained performance by paralleliz-
ing a post-processing workflow for climate data using the
Swift scripting language, with parallelism only scaling to 32
processes. On the other hand, our work is focused primarily
on I/O performance scaling to thousands of processes.
Both spatial and temporal parallelism have been studied

previously. Yu et al [16][17] use a spatio-temporal scheme to
achieve high I/O performance, but does not model the read
step. Childs et al [4] showed through a series of large parallel
visualization experiments that pure parallelism analysis op-
erations work at extreme scales, but I/O times became very
large, suggesting that the I/O performance required further
study. The TECA project [10] reports good temporal par-
allelism performance for climate data, but has little parallel
I/O or native spatial parallelism support, which creates a

problem for data with large spatial bounds. While spatio-
temporal parallelism is not new, our work focuses on the
connection between the resulting read access pattern and
the I/O performance. Our model explains why end-to-end
scaling of pure spatial or pure temporal pipelines are sub-
optimal.

Work has been performed to enable developers and end
users the ability to alter data decompositions and thus af-
fect read times. Kendall et al [6], using their BIL (Block I/O
Layer) software, show considerable performance gains by ag-
gregating smaller requests into larger requests which cover
more contiguous regions of the file on disk (two-phase collec-
tive I/O). Peterka et al [9] provide a generalized library for
building visualization algorithms on top of configurable do-
main decompositions, impacting I/O access patterns which
are executed using a variety of library access methods, in-
cluding BIL. Our contribution of a model will help users of
these tools and systems make more wise data decomposition
decisions.

Biddiscombe et al [2] introduced the concept of time to
the ParaView pipeline. While this work enabled the serial
processing of spatially decomposed time steps, our work en-
ables decomposition in both space and time, allowing for the
simultaneous processing of multiple time steps.

3. THE SPATIO-TEMPORAL PIPELINE
Spatial parallelism is a decomposition in which data is

spatially partitioned over all available processes. Each pro-
cess then applies the same set of computations on its piece
of data. When employing spatial parallelism, timesteps are
processed in serial, i.e. timestep 0 is processed, then timestep
1 is processed, etc. One side effect of spatial parallelism
is that increasing the number of processes results in each
timestep being spatially partitioned into more pieces, and
each piece becomes smaller. According to the read model
outlined in Section 4.5, this behavior adversely affects the
read pattern and impairs I/O performance.

Temporal parallelism is a method in which multiple timesteps
are processed in parallel. This is a form of pipeline paral-
lelism, in which multiple pipelines are instantiated in order
to process multiple inputs at once. Temporal parallelism
usually requires large amounts of memory, as each process
will load an entire timestep.

The spatio-temporal pipeline was designed to utilize both
spatial and temporal parallelism, which allows for more con-
trol of the access pattern used to read files. Spatio-temporal
parallelism is accomplished by first partitioning all available
processes into groups called time compartments. Each time
compartment is responsible for processing timesteps, and
performs computations independently of each other. Each
timestep is spatially partitioned over all processes within
the time compartment. If there are more timesteps than
time compartments, then a time compartment will process
multiple timesteps. For example, if there are two time com-
partments and six timesteps, then each time compartment
will process three timesteps. Each time compartment loads
one timestep at a time, and when a timestep is finished the
next available timestep is then loaded. For our implementa-
tion, each time compartment contains the same number of
processes.

In the spatio-temporal pipeline, the ratio between spa-
tial and temporal parallelism can be changed by adjusting
the number of processes in a time compartment. Assum-



ing the number of total processes is constant, if the time
compartment size is large, then there are few time com-
partments overall. This leads to lower temporal parallelism,
since fewer timesteps are processed concurrently, and higher
spatial parallelism, since each timestep will be partitioned
into more pieces. On the other hand, if the size of a time
compartment is lowered, the total number of time compart-
ments becomes higher. This allows for more timesteps to be
processed in parallel, thus temporal parallelism is increased,
while lowering the number of pieces each timestep is split
into, resulting in less spatial parallelism.
Because it is possible for multiple timesteps to be pro-

cessed concurrently, one restriction of the spatio-temporal
pipeline is that timesteps must be able to be processed inde-
pendently. Only operations which do not require any com-
munication between timesteps can be used. Examples of
such operations include computing the isosurface of each
timestep and creating an image for each timestep.
Despite a large number of visualization and analysis al-

gorithms requiring no communication, there are still some
operations in which the spatio-temporal pipeline is incom-
patible. Time-dependent operations which are not associa-
tive and require processing through timesteps in a certain
order are currently not supported in the spatio-temporal
pipeline. This class of operations include pathline advection
and Finite-Time Lyapunov Exponent (FTLE) computation.

4. MODELS
As mentioned earlier, large-scale visualization and anal-

ysis tasks are usually bottlenecked by the I/O read step.
The chosen parallel decomposition approach will determine
what the file access pattern is, which greatly affects I/O per-
formance. In order to illuminate how best to configure the
spatio-temporal pipeline to get an optimized read pattern,
we developed a model of a visualization pipeline. The goal
of our model is to compare and determine which paralleliza-
tion scheme will provide the best performance. A model for
the spatio-temporal pipeline is introduced, as well as one for
a pipeline using only spatial parallelism.
For modeling purposes, we use the following pipeline:

read → isosurface → write isosurface (1)

We assume that there is a time-varying dataset stored in the
format of each file containing one timestep of a scalar field.
Each timestep needs to be loaded from disk. Once the data
is loaded into memory, an isosurface is generated. Then the
resulting isosurface is written to disk.

4.1 Assumptions
Certain assumptions are made with the models:

• Each file is one timestep containing one scalar field

• Isosurfacing and writes have perfect parallel scaling

• The number of processes allocated per node (ppn) is
constant

• Each process is run on one core

• In the spatio-temporal pipeline, the total number of
processes is evenly divisible by the time compartment
size

• In the spatio-temporal pipeline, each time compart-
ment spans the same number of nodes

4.2 Definitions
The following variables are used in the models.

• n is the total number of nodes used

• ppn is the number of processes per node used

• p is the total number of processes, found by p = n ·ppn

• sf is the size of each file

• pf is the number of processes used to open one file

• nf is the total number of files in the dataset

• mf is the maximum number of files any process will
touch

• bw is the bandwidth available to each node

• bwp is the bandwidth available to each process, found
by bw/ppn

• tc is the time compartment size

4.3 Spatial Parallelism Model
The spatial parallelism model is based on a decomposition

that uses only spatial parallelism, in which all processes are
involved in processing each timestep. Therefore, in the spa-
tial parallelism model, mf = nf . The total time to compute
the pipeline, Ttotal, is found by

Ttotal = Tread + Tiso + Twrite (2)

where Tread, Tiso, and Twrite are the time taken in each
respective step in the pipeline.

Let us first consider the pipeline steps other than read
(modeling for the read stage is addressed in Section 4.5).
These steps are assumed to have perfect linear scaling. Since
each file goes through the pipeline, each stage is encountered
mf times,

Tiso = mf · Tisop , Twrite = mf · Twritep (3)

Where Tisop , Twritep is the time each respective step takes
when p processes are operating in parallel on one timestep.
Since these stages are assumed to have perfect linear scaling,
the time for each of these stages can be computed with the
following equations:

Tisop =
Tiso1

p
, Twritep =

Twrite1

p
(4)

Therefore, Ttotal can be characterized by the equation:

Ttotal = Tread +mf ·

[

Tiso1 + Twrite1

p

]

(5)



4.4 Spatio-Temporal Parallelism Model
In the spatio-temporal pipeline, processes are divided into

time compartments. Each time compartment runs in par-
allel and acts independently of each other. Therefore, the
total running time will be the maximum time any time com-
partment takes. This is equivalent to a time compartment
processing mf files. In the spatio-temporal model, mf is
found using the equation:

mf =

⌈

nf
p÷ tc

⌉

=

⌈

nf · tc
p

⌉

(6)

Similar to the spatial parallelism model, the total time is
the sum of each step in the pipeline.

Ttotal = Tread + Tiso + Twrite (7)

For all stages except read, the time of each step is

Tiso = mf · Tisotc , Twrite = mf · Twritetc (8)

Similarly to equations 4,

Tisotc =
Tiso1

tc
, Twritetc =

Twrite1

tc
(9)

Therefore, Ttotal can be written as

Ttotal = Tread +mf ·

[

Tiso1 + Twrite1

tc

]

(10)

How to model Tread is discussed in Section 4.5.

4.5 Read Performance Model
We now model the read times of both the spatial parallel

model and spatio-temporal model. Note that pf , the num-
ber of processes used to open one file, is different for each
model. For the spatial parallel model, pf = p, while for the
spatio-temporal model, pf = tc.
First, we start with the read time for one file, Tread1 ,

assuming perfect linear scaling. In this case, the read time is
the size of one file divided by the total available bandwidth.

Tread1 =
sf

bwp · pf
(11)

For both the spatial parallel and spatio-temporal meth-
ods, the maximum number of files read by any process is
mf , so the total read time for mf files is

Treadmf
= mf ·

[

sf
bwp · pf

]

(12)

In general, the use of parallelism does not scale perfectly.
There is always overhead associated with parallel algorithms,
whether it is communication or load imbalance. Since each
file is spatially decomposed and read in parallel, we expect
there to be overhead for each file read.

Treadmf
= mf ·

[

sf
bwp · pf

+ overhead

]

(13)

A parallel file system is a complicated system with many
variables and parameters that could affect its performance.

In general, a good rule of thumb is that the best I/O per-
formance can be achieved by using contiguous reads. As the
number of contiguous reads decrease and the number of file
seeks increase, I/O performance will be impaired.

Thus, we base the overhead on the number of file seek
operations required to read the file. We assume that the file
is written to disk in such a way that spatial coordinates of
the x-axis changes fastest, then the y-axis, and finally the
z-axis. With this file format, partitions can be read row by
row. Therefore the number of seeks can be estimated as
the number of rows in a partition, which we denote as ns
(number of seeks). Though this is not necessarily the actual
number of seeks the disk will perform in a parallel filesystem,
we find it is a good estimate. We also believe that as the
number of concurrent processes used to read a file grows,
the read performance degrades due to increased contention.
Because of this, the overhead is also based on the number of
processes used to read in a file. Therefore, the final equation
for overhead becomes

overhead = α · ns+ β · pf (14)

Both α, the time to perform a seek, and β, the amount of
contention introduced per process, are free parameters that
are based on the hardware characteristics of each machine.
The final equation for the read step now becomes

Treadmf
= mf ·

[

sf
bw · pf

+ α · ns+ β · pf

]

(15)

4.6 Analysis of Models
One of the most important inferences we can make from

this model is how each method scales as the number of files
and processes increase. From the models, we can infer the
general performance trend of a weak scaling study (actual
results of a weak scaling study are discussed in Section 5).
Since it is assumed that the isosurface and write step scale
linearly in both methods, the major difference will be how
the read step behaves.

As the amount of work and number of processes increase,
we expect the spatial parallelism method to incur more read
overhead per file. This is because as the number of processes
grows, the number of processes used to open a file increases.
Also, each individual file will be spatially split into more
partitions. This will increase both the ns and pf terms in
Equation 14. Thus using spatial parallelism will result in
worse file access patterns as the number of processes grows.

For the spatio-temporal pipeline, as weak scaling increases,
the time compartment size is kept constant, which means
more time compartments are added to process the increased
number of files. For example, assume an initial configu-
ration of 4 files and 8 processes with a time compartment
size of 4. When doubling to 8 files and 16 processes and
a time compartment size of 4, the processes are split into
four time compartments, each composed of four processes.
In this situation, each file is still read by four processes, so
the spatial partitioning remains the same, thus the number
of seeks needed remains unchanged. Therefore the resulting
overhead value of Equation 14 remains constant. Overall,
we expect the spatio-temporal pipeline to scale perfectly in
a weak scaling study due to the fact that the read pattern
remains unchanged.

This perfect weak scaling of the spatio-temporal pipeline
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Figure 1: Weak scaling results between the spatio-
temporal pipeline and spatial parallelism. Run
on Mustang using the POP dataset. The spatio-
temporal pipeline with optimized read access pat-
terns scale significantly better than the spatial par-
allelism method. At 2048 processes, there is a differ-
ence of a factor of over 400 between the two meth-
ods.

implies that reading in multiple files by applying the same
read pattern to each file does not create any additional over-
head for the filesystem. This assumes that the number of
nodes used per file remains fixed so that the amount of band-
width per file is constant.

5. RESULTS
In order to verify the accuracy of our model, we performed

several timings tests. We used two different climate datasets
for these tests. The first dataset is output from the Paral-
lel Ocean Program (POP), a simulation of the entire ocean,
which we refer to as the POP dataset. The data is com-
posed of salinity values, and up to 256 timesteps were used.
The spatial resolution of each timestep is 3600 x 2400 x 42.
Each file is 1.4 GB, for a total size of roughly 350 GB. The
other dataset used is the output from a CAM (community
atmospheric model) simulation, which we refer to as ATM.
Each timestep has spatial resolution of 1152 x 768 x 30,
and a total of 16 timesteps were used. For both datasets,
files are stored in NetCDF 3 format, and are read using the
vtkNetCDFReader class in VTK. The vtkNetCDFReader
utilizes the standard NetCDF libraries without any parallel
I/O optimizations.
The tests involving the POP dataset were run on Mus-

tang, a supercomputer at Los Alamos National Laboratory.
Mustang features nodes with dual-socket AMD 12-core Mag-
nyCours and 64 GB of memory. Mustang uses the Panasas
filesystem.
All tests with the ATM dataset were run on Hopper, a

supercomputer at the National Energy Research Scientific
Computing Center (NERSC). Hopper contains two 12-core
AMD MagnyCours and 32 GB memory per node. Hopper
uses the Lustre filesystem.

5.1 Weak Scaling
Weak scaling studies were conducted using both datasets.

The POP dataset was run on Mustang. Tests began at one
file and 8 processes, and doubled until 256 files and 2048
processes were reached. The number of nodes allocated was
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num processes

100

101

102

103

To
ta

l T
im

e 
(s

)

Weak Scaling: ATM on Hopper

spatial
spatio-temporal

Figure 2: Weak scaling results between the spatio-
temporal pipeline and spatial parallelism. Run on
Hopper using the ATM dataset. The performance of
the spatio-temporal pipeline is orders of magnitude
better than the spatial method due to the difference
in file access patterns.

equal to the number of files, with 8 cores per node being
used. The time compartment size was set to 8 for all tests.
With this configuration, each time compartment consisted
of 8 processes all located on the same node, and each node
held only one time compartment. Each time compartment
was responsible for processing one file. Each file was first
loaded into memory, then an isosurface was generated, and
finally the isosurface was written to disk.

The weak scaling tests using the ATM dataset were sim-
ilarly configured. All tests were run on Hopper, and the
time compartment size was chosen to be 24 for all tests.
The number of files began at one and the number of pro-
cesses started at 24. Subsequent tests doubled these values
until 16 files and 384 processes were reached. The number of
nodes allocated was equal to the number of files processed,
and 24 cores per node were used. Files were processed using
the same pipeline as the POP tests described earlier.

Figure 1 shows the results from the POP tests on Mus-
tang, and Figure 2 shows the results from the ATM tests
on Hopper. For both tests, the spatio-temporal pipeline dis-
played significantly better performance and scalability. For
the POP tests, at 256 files and 2048 processes, the spatial
parallelism method required roughly 29,000 seconds (about
8 hours), while the spatio-temporal pipeline performed the
same work using only 60 seconds. This resulted in a speedup
factor of over 480. The total time of the spatio-temporal
method stayed relatively flat, beginning at 20 seconds, inch-
ing up to 30 seconds at 1024 processes, and jumped to 60
seconds at 2048 processes. We believe at 1024 processes,
the maximum bandwidth of the system had been reached,
thus the doubling of the time. Similar trends are shown for
the ATM tests. The spatio-temporal method outscales the
spatial method by up to two orders of magnitude. At 394
processes, the spatial method required 274 seconds, while
the spatio-temporal method only took 6.5 seconds.

Given the three step pipeline of read, isosurface, and write,
our models assumed that the isosurface and write step would
scale perfectly. The models also predicted that the read step
would increase in time when using only spatial parallelism,
and would scale perfectly using the spatio-temporal pipeline
due to differences between file access patterns. Figures 3 and
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Figure 3: Per component breakdown of results of
the weak scaling tests on the POP dataset for spatial
parallelism.
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Figure 4: Per component breakdown of results of
the weak scaling tests on the POP dataset for the
spatio-temporal pipeline.

4 show the actual per component breakdown of the weak
scaling results. The spatial parallelism results in Figure 3
show that the isosurface computation step does scale nearly
perfectly. The write step begins to increase after 128 pro-
cesses, but it never consumes more than 1% of the overall
running time. As predicted by the model, the read step
does steadily increase as the number of processes rise, dom-
inating the overall running time. Thus, the read pattern
that resulted by using spatial parallelism greatly impairs
I/O read performance. For the spatio-temporal pipeline,
Figure 4 shows all three steps scaling well until 2048 pro-
cesses are used, in which case the read and write times in-
crease. As mentioned earlier, we believe the increase in read
times is due to bandwidth limitations, and the rise in write
times may also be due to hardware limitations. Up to 1024
processes, the read times remained fairly steady, indicat-
ing that the spatio-temporal pipeline used a more optimal
file access pattern. Overall, our models have predicted the
general trends of both the spatial parallelism and spatio-
temporal methods.
Our models not only let us discern the trends of differ-

ent components, but also can be used to obtain an estimate
of the total running time. Many variables, such as size of
one file, number of files, and processes per node, are de-
pendent on the run configuration. Other variables, such as
bwp (the bandwidth available to each process), Tiso1 , and

Twrite1 , can be found by performing small timings tests on
one node. The number of seeks, ns, can be calculated as
the number of rows in each spatial partition. Once all these
variables are obtained, they can be plugged into Equation 5
and Equation 10. The two free variables in Equation 15, α
and β, are then found by finding the best fit of the modeled
times to some actual results on the same machine.

Figure 5 compares the total time estimated from the model
and the actual results of the POP weak scaling tests. It was
empirically found that α = 7× 10−6 and β = 1× 10−3 pro-
vided the best fit. For the spatial parallelism method, the
modeled time tracks fairly close to the actual results. For the
spatio-temporal method, the model predicts perfect scaling,
so the modeled time is a flat line in the graph. The actual
times track the modeled times well, especially at low num-
ber of processes. At 2048 processes, the actual time spikes
up, but as stated earlier, we believe this is due to bandwidth
limitations, which the model does not account for.

The modeled and actual total time of the ATM weak scal-
ing tests are shown in Figure 6. A best fit was found by
using α = 5× 10−5 and β = 1× 10−4. For the spatial par-
allelism method, the modeled times track well with the ac-
tual times. The greatest difference is at 48 processes, where
the model estimate was 30 seconds and the actual time was
11.5 seconds. For the spatio-temporal method, the model
always overestimates the total time, but the actual differ-
ence is small. Overall, our models predicted the total time
of both the POP and ATM tests fairly accurately.

6. DISCUSSION
From the timing tests performed in Section 5, we see that

the read pattern that resulted by using the spatio-temporal
pipeline resulted in a massive performance increase versus
the read pattern induced by using only spatial parallelism.
According to our model, the way to reduce I/O read times
are to choose read patterns that minimize the number of
seeks needed, while also reducing the number of processes
reading a file at once. Another result from the model that
can be seen in the timing tests is the notion that reading
multiple files in parallel using the same read pattern will
scale. This scaling can be seen in Figure 1, in which the
total time of spatio-temporal pipeline remains fairly flat up
to 1024 processes. At 1024 processes, 128 files of size 1.4 GB
each are being read in parallel using the same read pattern
of 8 processes per file.

One possible method to reduce I/O read times is to de-
crease the number of seeks by changing the way spatial par-
titioning is performed. For example, if a 2D array were
stored such that x changed fastest and then y, then parti-
tioning along the y-axis would result in contiguous pieces.
Both the spatial parallelism and spatio-temporal method
would benefit from more contiguous partitioning. Assum-
ing the data format of one file per timestep, even with a
different partitioning scheme, the read patterns from using
the spatio-temporal pipeline will probably still have better
performance than the file access patterns resulting from the
spatial method, since spatial parallelism forces each file to
be partitioned into many more pieces. This results in expo-
nentially more seeks when reading data from disk.

The spatio-temporal pipeline introduces one major pa-
rameter, the size of a time compartment. This parameter is
important because it indirectly controls the file access read
pattern. Unfortunately, our model does not explicitly solve
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Figure 5: Modeled total times versus actual total times for the spatial parallelism and spatio-temporal weak
scaling tests on Mustang for the POP dataset. The model was used with α = 7× 10−6 and β = 0.001. Overall,
the modeled time duplicates the trends seen in the actual times.

24 48 96 192 384
num processes

100

101

102

103

se
co

nd
s

Spatial Parallelism - Total Time: Modeled vs Actual

modeled total time

actual total time

(a) Spatial Parallelism

24 48 96 192 384
num processes

100

101

102

103

se
co

nd
s

Spatio-Temporal - Total Time: Modeled vs Actual

modeled total time
actual total time

(b) Spatio-Temporal Parallelism

Figure 6: Modeled total times versus actual total times for the spatial parallelism and spatio-temporal weak
scaling test on Hopper for the ATM dataset. The model was used with α = 5× 10−5 and β = 0.0001. The
modeled times are within the same order of magnitude, and track the actual times well at higher process
counts.

for this variable, but several guidelines can be suggested. If
there is no limit to the number of nodes that can be allo-
cated, then one strategy to obtain the best performance is
to first find the optimal number of processes for one file,
then scale out by duplicating that configuration to multiple
nodes. For example, the configuration of the weak scaling
tests on the POP dataset in Section 5 was simply to use 8
processes per node for each file, even though there were 24
cores available per node. According to our model, scaling
out by duplicating the run configuration should not increase
the total running time of the program. If there is a limit
to the number of nodes that can be allocated, then the best
strategy would be to try to utilize each node as efficiently
as possible. One way to increase efficiency per node is to
place multiple time compartments per node, assuming there
is enough memory per node. Overall read performance will
decrease since a node’s I/O bandwidth is now divided over
multiple files, but in practice this is offset by the increase
in node efficiency. This is due to the fact that reading a
file with one node will rarely saturate the network link. For
example, changing the previously mentioned configuration
for the POP dataset tests to 16 processes and 2 time com-
partments per node results in each node processing two files
at once. This results in an increase of about 20% to total

time. The benefit is that only half the number of nodes is
needed as before in order to perform the same amount of
work. Similar to the earlier guideline, first find the most
efficient configuration using one node, and simply duplicate
the configuration and scale it out to multiple nodes.

In this paper, we have focused on one very common file
format, in which each file is one timestep of one scalar field.
Although we have not tested other file formats, our models
are general enough that they can be used to estimate the
performance of any file format given a certain read pattern.
Checking the accuracy of the model and obtaining timing
results with a variety of different file formats is left for future
work.

7. CONCLUSION
When decomposing a problem into parallel tasks, the read

pattern that results from the decomposition is often over-
looked. It is critical to understand this effect, since the file
access pattern, combined with the format of the stored data,
plays a significant role in I/O read performance. In this pa-
per, we have introduced a model which can estimate the
I/O read time for a file, given the partitioning of the file.
Using this model, coupled with the flexibility of the spatio-
temporal pipeline, we were able to generate read patterns



which obtained far greater I/O performance versus spatial
parallelism. Several timing tests showed that the optimized
file access patterns resulted in a factor of more than 400
speedup. The spatio-temporal pipeline is implemented in
ParaView, which is also bundled alongside UV-CDAT [1].
For future work, we plan on studying the performance

implications of different file access patterns for with different
data formats, such as having multiple timesteps packed into
one file.
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